Коллоидный субцитрат висмута рецепт

Использование препарата висмута трикалия дицитрата в лечении синдрома раздраженного кишечника с преобладанием диареи

В патогенезе синдрома раздраженного кишечника все больше придается значение роли воспаления низкой степени активности в слизистой оболочке толстой кишки. Препараты висмута трикалия дицитрата обладают выраженными противовоспалительными и цитопротективными

Pathogenesis of Irritable Bowel Syndrome (IBS) is characterized by low grade inflammation in intestinal mucus layer. Bismuth tripotassium dicitrate has pronounced anti-inflammatory and cytoprotective effectiveness and so may be prescribed as a medical drug for IBS treatment and improvement of clinical representation of the disease.

В современной гастроэнтерологии синдром раздраженного кишечника (СРК) является одной из самых обсуждаемых и изучаемых проблем, известно о выраженном снижении качества жизни у больных с СРК [1, 2]. Обращает на себя внимание высокая распространенность данной патологии: не менее 10% лиц среди взрослого населения имеют соответствующие симптомы, при том более высокая обращаемость по поводу СРК наблюдается в развитых странах Европы, Америки, а также в Японии, где распространенность заболевания достигает 30–50%. Пик заболеваемости приходится на молодой трудоспособный возраст 24–41 год.

Заболевание считается полиэтиологическим. Рассматриваются следующие факторы патогенеза СРК: нарушения двигательной активности пищеварительного тракта, висцеральная гиперчувствительность, расстройство взаимодействия в системе «головной мозг — кишка», дисбиоз, последствия перенесенных кишечных инфекций, генетические факторы и факторы окружающей среды, психосоциальные расстройства, нарушения вегетативного и гормонального баланса.

Для установления СРК принято использовать критерии диагностики Римского консенсуса III (2006 г.), которые включают: наличие рецидивирующей боли в животе или дискомфорта по крайней мере 3 дня в месяц за последние 3 месяца, с началом симптомов не менее 6 месяцев, связанные с двумя или более из нижеследующих признаков:

  • улучшение после дефекации;
  • начало связано с изменением частоты стула;
  • начало связано с изменением формы стула [3].

Согласно Римским критериям III и с учетом Бристольской шкалы форм кала различают следующие клинические варианты: СРК с преобладанием запора, СРК с преобладанием диареи, смешанный тип СРК и неопределенный СРК. Однако, как известно, у одного больного подтипы могут варьировать на протяжении жизни.

В клинической картине также встречаются внекишечные проявления: диспепсия, интерстициальные циститы, фибромиалгия, хроническая усталость, бессонница, мигренеподобные головные боли и другие.

При назначении терапии пациентам с СРК большое значение придается детальному изучению истории болезни и дифференциации групп жалоб (абдоминальных, общих, психологических и т. д.), что в значительной степени определяет тактику терапии. Важными составляющими в лечении данной патологии являются нормализация образа жизни, режима и характера питания, психотерапия. Согласно клиническим рекомендациям Российской гастроэнтерологической ассоциации, Ассоциации колопроктологов России по диагностике и лечению больных с СРК медикаментозное лечение включает в себя: препараты для купирования боли (спазмолитики), диареи (лоперамида гидрохлорид, диоктаэдрический смектит, невсасывающийся антибиотик рифаксимин, отмечена эффективность курсового (в течение 3 недель) приема висмута трикалия дицитрата), запоров (слабительные), препараты комбинированного действия, пробиотики, психотропные препараты [4]. Сложности подбора терапии обусловлены переходами одного клинического варианта в другой, при СРК с диареей невозможно длительное назначение сильных антидиарейных препаратов, которые приводят к развитию болей или запора. Продолжается поиск эффективных схем лечения, одним из перспективных направлений является противовоспалительная терапия преимущественно при диарейной форме синдрома раздраженного кишечника.

Препараты висмута с давних времен применялись в лечении сифилиса, заболеваниях кожи и особенно желудочно-кишечных заболеваний, протекающих с послаблением стула, отличались своими адсорбирующими, вяжущими, подсушивающими и антисептическими свойствами. В арсенале врачей широкий выбор препаратов висмута на основе солей субнитрата, субсалицилата, субгаллата, субцитрата и др., однако в последние десятилетия чаще используют препараты на основе висмута трикалия дицитрата (ВТД) (другое название — коллоидный субцитрат висмута). Соли висмута по-разному действуют и накапливаются в организме. Например, для коллоидного субцитрата висмута необходимо всего 8 мг/л для достижения минимальной подавляющей концентрации Helicobacter pylori (H. pylori), в то время как для неколлоидного субцитрата висмута потребуется в 2 раза больше, а при использовании субнитрата висмута для тех же целей необходимо применять 16-кратное количество препарата. Тем не менее, все препараты висмута практически не всасываются из пищеварительного тракта, выводятся с калом и отличаются низкой токсичностью, что обусловлено малой биодоступностью — 0,16–1,5% от принятой дозы, а небольшая часть висмута, которая поступает в плазму, выделяется с мочой. Побочные эффекты при использовании препарата встречаются редко и возникают на фоне длительного приема и в очень высоких дозах.

В последние десятилетия в клинической практике все чаще назначаются висмут-содержащие препараты, во многом это связано с успешным их использованием в схемах терапии для эрадикации H. pylori. В основе антибактериального эффекта лежит образование комплекса с белками бактериальной стенки и деградация бактерий за счет окислительного стресса, нарушение синтеза АТФ в бактериальной клетке, препятствие адгезии H. pylori к эпителиоцитам, подавление активности вырабатываемых ими ферментов (уреазы, каталазы и др.) [5, 6]. Показаны цитопротективные свойства при лечении эрозивно-язвенных поражений желудка и двенадцатиперстной кишки, вызванных приемом нестероидных противовоспалительных средств [7]. Особенно препараты ВТД отличаются противовоспалительной активностью, которая заключается в способности образовывать на поверхности слизистой оболочки защитные пленки, подавлять синтез цитокинов, стимулировать продукцию простагландинов [8]. Интересен ряд работ, в которых продемонстрирована роль висмута в ингибировании активности индуцируемой синтазы оксида азота в эпителиальных клетках кишечника и индукции гемоксигеназы-1, обуславливавшая клиническую эффективность применения ВТД у больных с воспалительными заболеваниями кишечника и СРК [9–12].

В связи с вышеизложенным, в проводимой научно-исследовательской работе изучалась эффективность отечественного препарата Новобисмол (активное действующее вещество — ВТД), который назначали пациентам СРК с преобладанием диареи (СРК-Д). Оценивалось влияние исследуемого препарата на динамику клинических симптомов, психоэмоциональные показатели и качество жизни.

Материалы и методы исследования

Исследование эффективности ВТД (препарат Новобисмол) проводилось в гастроэнтерологической клинике СЗГМУ им. И. И. Мечникова, Санкт-Петербург.

В исследование были включены 30 пациентов, у которых был установлен диагноз СРК-Д, согласно критериям Римского консенсуса III. Распределение пациентов по полу: 21 женщина, 9 мужчин. Средний возраст пациентов составил 51,3 ± 12,4 года.

Пациенты получали лечение только ВТД (препарат Новобисмол) по 1 таблетке 3 раза в день за 30 минут до еды и 1 таблетку на ночь в течение 3 недель.

Всем включенным в исследование пациентам был проведен следующий объем обследования: опросник для оценки выраженности гастроинтестинальных жалоб, связанных с течением СРК, и общих жалоб, частоты и характера стула; оценка качества жизни пациента с помощью опросника SF-36. Количественная оценка проводилась по следующим показателям: физическое функционирование (PhysicalFunctioning — PF), ролевое функционирование, обусловленное физическим состоянием (Role-PhysicalFunctioning — RP), интенсивность боли (Bodilypain — BP), общее состояние здоровья (GeneralHealth — GH), жизненная активность (Vitality — VT), социальное функционирование (SocialFunctioning — SF), ролевое функционирование, обусловленное эмоциональным состоянием (Role-Emotional — RE), психическое здоровье (MentalHealth — MH); оценка уровня ситуационной и личностной тревожности с помощью шкалы Спилбергера–Ханина, оценка депрессии с помощью шкалы Цунга.

Для статистической обработки полученных данных была использована программа SPSS 17.0 (SPSSInc., США). Вследствие выраженных отличий распределения анализируемых вариационных рядов от нормального распределения, для анализа данных были использованы непараметрические статистические критерии. Для оценки эффекта курсового приема исследуемого препарата был использован парный критерий Вилкоксона, с помощью которого проводилось сравнение исходных и конечных величин оцениваемых признаков (дизайн исследования не предполагал необходимости использования контрольной группы при данном статистическом анализе, так как присутствовал только один системно действующий фактор — прием исследуемого препарата — при отсутствии других факторов, которые могли бы оказать сколько-нибудь значимое влияние на изучаемые в динамике показатели).

Результаты исследования и обсуждение

Частота выявления клинических симптомов СРК до и после курса приема ВДТ (препарат Новобисмол) представлена в табл. 1. У пациентов с СРК-Д, включенных в исследование, наиболее распространенными жалобами были: боли в животе (беспокоили всех пациентов), вздутие и урчание в животе (выявлено у 18 (60%) и у 26 (87%) пациентов соответственно), часто наблюдались изжога, отрыжка, абдоминальный дискомфорт.

После курса лечения препаратом ВДТ (препарат Новобисмол) наблюдалась значительная редукция клинических проявлений СРК: достоверно уменьшился болевой и диарейный синдром, вздутие и урчание в животе (p

А. В. Пушкина*
Е. Б. Авалуева* , 1 ,
доктор медицинских наук, профессор
И. А. Данилова**, доктор медицинских наук
И. В. Лапинский*
Е. И. Ткаченко*,
доктор медицинских наук, профессор
Е. В. Сказываева*, кандидат медицинских наук
О. И. Медведева*, кандидат медицинских наук

* ГБОУ ВПО СЗГМУ им. И. И. Мечникова МЗ РФ, Санкт-Петербург
** Межрайонный ЦПАО Выборгского района СПб ГБУЗ ГПАБ Комитета по здравоохранению Правительства СПБ, Санкт-Петербург

Источник

Препараты висмута – фармакологические основы клинического эффекта

Соединения висмута нашли широкое применение в современной гастроэнтерологии, а наиболее часто используемым препаратом среди них является висмута трикалия дицитрат. Он обеспечивает защиту слизистой от воздействия различных повреждающих факторов и позволяет

Читайте также:  Рецепты для китчен айд

Bismuth-based drugs are widely used in modern gastroenterology. Among them the most commonly used is bismuth subcitrate potassium. It protects the mucosa from the effects of various damaging factors, and anti-Helicobacter activity allows to overcome resistance of H. pylori to antibiotics, increasing the efficiency of pharmacotherapy.

Висмут (Bi) — относительно редкий элемент, обладающий не только металлическими свойствами, но и характеристиками, близкими к полупроводникам и изоляторам, поэтому иногда классифицируется как полуметалл или металлоид.

Bi (III) легко гидролизуется в водных растворах и имеет высокое сродство к кислороду, азоту и серосодержащими лигандам, Bi (V) является мощным окислителем в водном растворе и неустойчив в биологических системах [1].

Препараты висмута

Соединения висмута вошли в медицинскую практику со времен средневековья, а первый научный доклад о содержащем висмут препарате для лечения диспепсии был сделан в 1786 г. [1]. На сегодняшний день самое широкое применение соединения висмута нашли в гастроэнтерологии, а наиболее часто используемыми среди них являются висмута субсалицилат и коллоидный субцитрат (висмута трикалия дицитрат, ВТД) [2, 3] (табл. 1).

Висмута субсалицилат во многих странах используется в качестве безрецептурного препарата для быстрого купирования изжоги, тошноты и диареи.

Коллоидный висмута субцитрат нашел применение в первую очередь для лечения заболеваний, ассоциированных с хеликобактерной инфекцией, а также как пленкообразующий гастропротектор. Именно этот препарат представляет наибольший интерес с точки зрения фармакологических свойств и клинического применения.

Перспективным представляется применение радионуклидов висмута (например, 213 Bi) для диагностики и лечения различных опухолей — лимфом, лейкемии [4, 5].

Висмута трикалия дицитрат

Взаимодействие со слизистой

На поверхности слизистой ВТД образует гликопротеин-висмутовые комплексы, по сути представляющие собой диффузионный барьер для HCl, который усиливается за счет дополнительного повышения вязкости пристеночной слизи [6, 7]. Этот процесс является рН-зависимым и ослабевает по мере повышения рН [8]. Если при нейтральном рН ВТД преимущественно находится в коллоидном состоянии, формируя структуры [Bi6O4(cit)4] 6- и [Bi12O8(cit)8] 12- , то при рН 2+ -чувствительный рецептор (CaSR), активируемый в норме внеклеточным Са 2+ и обеспечивающий повышение внутриклеточного Са 2+ , MAP-киназной активности и, в итоге, пролиферацию эпителиальных клеток слизистой желудка [22].

В экспериментальных исследованиях на слизистой толстой кишки мышей показана способность ионов Bi (III) за счет антагонизма с ионами Fe (III) подавлять активность неамидированного гастрина и, таким образом, возможность снижения избыточной гастрин-обусловленной пролиферации клеток [23].

Антихеликобактерная активность

Бактерицидное действие ВТД имеет очень важное значение. Под действием ионов висмута H. pylori теряет способность к адгезии, снижается подвижность микроорганизма, происходит вакуолизация и фрагментация клеточной стенки, подавление ферментных системы бактерий, т. е. достигается бактерицидный эффект (в отношении как вегетативных, так и кокковых форм H. pylori) [24–26]. Этот эффект при монотерапии ВТД хотя и незначителен (находится в пределах 14–40%), но не подвержен развитию резистентности и резко потенцируется при одновременном назначении с антибиотиками.

Висмут проникает в H. pylori, преимущественно локализуясь в области клеточной стенки микроорганизма. Он активно взаимодействует с нуклеотидами и аминокислотами, пептидами и белками H. pylori. Хотя молекулярные механизмы антихеликобактерного действия соединений висмута изучены не полностью, ясно, что основными мишенями в микроорганизме все же являются белковые молекулы (в том числе ферменты). Экспрессия примерно восьми белков подвергается up- или down-регуляции при действии ионов висмута [27, 28].

J. R. Lambert и Р. Midolo сформулировали основные молекулярные механизмы антихеликобактерного действия препаратов висмута [29], впоследствии дополненные другими исследователями [27]:

1) блокада адгезии H. pylori к поверхности эпителиальных клеток;
2) подавление различных ферментов, продуцируемых H. pylori (уреаза, каталаза, липаза/фосфолипаза, алкилгидропероксидредуктаза и др.), и трансляционного фактора (Ef-Tu);
3) прямое взаимодействие с белками теплового шока (HspA, HspB), нейтрофил-активирующим белком (NapA), нарушение структуры и функции других белков;
4) нарушение синтеза АТФ и других макроэргов;
5) нарушение синтеза, структуры и функции клеточной стенки и функции мембраны;
6) индукция свободнорадикальных процессов.

Одним из механизмов антибактериального действия ионов висмута является их взаимодействие с комплексом клеточной стенки/гликокаликса, имеющимся у некоторых микроорганизмов (в том числе у H. pylori), с вытеснением двухвалентных катионов Mg 2+ и Ca 2+ , необходимых для построения полисахаридных цепочек. При этом происходит локальное ослабление участков гликокаликса и выпирание клеточной стенки/мембраны через образовавшиеся «окна», что приводит к нарушению функционирования микроорганизма и может активировать аутолитические процессы, приводящие к его гибели [30].

Предполагается, что попадание висмута в H. pylori опосредуется через железотранспортные пути, а проникнув, он взаимодействует с участками связывания Zn (II), Ni (II) и Fe (III) белков и ферментов, нарушая их функцию [31, 32]. Например, связывание ионов висмута с малыми цитоплазматическими белками Hpn и Hpnl приводит к резкому нарушению их детоксицирующей и аккумулирующей функции «хранилища» для ионов Ni [33].

H. pylori характеризуется необычной версией шаперонина GroES (т. е. HpGroES), который обладает уникальным C-концом, богатым гистидином, цистеином и имеющим три металл-связывающих остатка (с Zn (II)), что обеспечивает сворачивание полипептидных цепей с формированием четвертичной структуры белка. Висмут-содержащие препараты прочно прикрепляются на этом сайте, вытесняя связанный цинк и, следовательно, вызывая резкое нарушение функции шаперонина HpGroES [34].

Препараты висмута, проникая в H. pylori, способны индуцировать мощный окислительный стресс в микроорганизме, что приводит к торможению деятельности многих ферментов в целом. Потенцируется прооксидантное действие подавлением активности тиоредоксина и алкилгидропероксидредуктазы (TsaA) микроорганизма [27, 28].

Ингибирование таких важных для микроорганизма ферментов, как протеаза и уреаза, является доказанным фактом в развитии антихеликобактерного эффекта ВТД [4]. В минимальной ингибирующей концентрации ВТД подавляет общую протеазную активность микроорганизма примерно на 87% [28].

Большое внимание привлекает взаимодействие висмута с ферментами цикла трикарбоновых кислот микроорганизма (фумаратредуктазы, фумаразы), обеспечивающего образование ряда биохимических прекурсоров (α-кетоглутарат, сукцинил-КоА, оксалоацетат) и работающего как источник образования АТФ. В результате уменьшается продукция макроэргов и подавляются многие энергозависимые процессы (в том числе репаративные, двигательные), что отражается, например, на скорости колонизации микроорганизмом различных отделов желудка [35, 36]. Потенцируется этот эффект блокадой локализованного в микробной стенке/мембране дитиольного фермента Na + /K + -АТФазы, с которым ионы Bi образуют стабильный комплекс [24].

В качестве еще одной ферментной мишени препаратов висмута рассматривается алкогольдегидрогеназа, участвующая в продукции ацетальдегида, который, секретируясь микроорганизмом, оказывает подавляющее действие на локальные защитные факторы слизистой, ингибируя секрецию белка и нарушая связывание пиридоксальфосфата с зависимыми ферментами [37].

Важное значение имеет также подавление висмутом активности фосфолипаз С и А2 H. pylori [38, 39]. В качестве новых мишеней для антихеликобактерного действия ВТД обсуждаются S-аденозилметионинсинтаза, альдолаза, фруктозобисфосфат и протеин S6 30S-субъединицы рибосомы [39].

Фармакокинетика ВТД

После перорального приема ВТД концентрация висмута в слизи желудка и слизистой сохраняется в пределах трех часов, после чего резко падает вследствие нормального обновления слизи [40]. Несмотря на то, что небольшая часть микропреципитатов ВТД может проникать в микроворсинки и путем эндоцитоза попадать в клетки эпителия, точные механизмы транспорта висмута в системный кровоток до настоящего времени неизвестны. Однако очевидно, что этот процесс происходит преимущественно в верхнем отделе тонкой кишки [41].

Биодоступность препаратов висмута низкая и у ВТД составляет 0,2–0,5% от введенной дозы [42, 43]. Н2-гистаминоблокаторы и ингибиторы протонной помпы могут увеличивать этот показатель [44]. После попадания в кровь препарат больше чем на 90% связывается с белками плазмы.

Измерение концентрации висмута в крови и моче после курсового применения ВТД в дозе 360 мг/сут в течение 4–6 недель показало большую вариабельность этого показателя. Так, концентрация висмута в крови варьировала от 9,3 до 17,7 мкг/л и выходила на плато примерно к 4-й неделе применения препарата [45]. В отдельных исследованиях были зафиксированы более высокие уровни препарата в крови (33–51 мкг/л), однако это не сопровождалось развитием побочных эффектов [46, 47]. Концентрация висмута в крови, как и площадь под фармакокинетической кривой, выше в том случае, если препарат принимается утром, по сравнению с ранним вечерним приемом [48].

В исследованиях на животных показано, что преимущественное накопление препарата происходит в почках и в значительно меньшей концентрации он обнаруживается в легких, печени, мозге, сердце и скелетной мускулатуре [49].

Особенности метаболизма и элиминации висмута изучены недостаточно. Период полувыведения висмута из крови и мочи у пациентов с интоксикацией составляет соответственно 5,2 и 4,5 дня [50]. У здоровых добровольцев и пациентов с гастритом клиренс составляет примерно 22–102 мл/мин (медиана 55 мл/мин) и Т1/2 около 5 дней (Т1/2 β до 21 дня), что свидетельствует о тканевом депонировании препарата и его медленной мобилизации оттуда [51]. На выведение препарата оказывает влияние функция почек, и при ее ухудшении почечный клиренс препарата может снижаться. Некоторые фармакокинетические показатели ВТД приведены в табл. 2.

Читайте также:  Быстро вкусные слоеные салаты рецепты

Клиническая эффективность ВТД

ВТД является важным компонентом клинических схем антихеликобактерной терапии либо в составе традиционной квадротерапии, либо в качестве дополнительного компонента тройной терапии первой линии, что дает прирост эффективности эрадикации на 15–20% [52, 53, 54]. В первую очередь, это обусловлено способностью ВТД преодолевать резистентность H. pylori к антибиотикам (особенно к кларитромицину), а не собственной бактерицидной активностью препарата висмута [55–57]. Интерес представляет также включение ВТД в схемы последовательной антихеликобактерной терапии [58].

Безопасность ВТД

Несмотря на статус тяжелого металла, висмут и его соединения считаются нетоксичными, в отличие от расположенных рядом в периодической таблице мышьяка, сурьмы, свинца и олова. Нетоксичность соединений висмута объясняется преимущественно за счет их нерастворимости в нейтральных водных растворах и биологических жидкостях и крайне низкой биодоступностью. Большинство соединений висмута являются даже менее токсичными, чем хлорид натрия [59].

A. C. Ford и соавт. в рамках мета­анализа, проведенного по публикациям баз MEDLINE и EMBASE, включающего 35 рандомизированных контролируемых исследований и 4763 пациента, пришли к выводу, что терапия язвенной болезни желудка с использованием препаратов висмута безопасна и хорошо переносится. Наиболее часто встречающимся побочным эффектом является потемнение стула за счет образования сульфида висмута [60].

У очень небольшой части больных может встречаться легкое кратковременное повышение уровня трансаминаз, однако оно исчезает после окончания курса терапии. Высокие дозы ВТД, применяемые длительное время, теоретически могут быть причиной развития энцефалопатии, однако зафиксировано очень небольшое число таких поражений центральной нервной системы. Наиболее манифестное, но обратимое проявление висмутовой энцефалопатии описано у мужчины, получившего два 28-дневных курса ВТД с приемом 600 мг препарата 4 раза в день и принимавшего периодически по 240 мг/сут в течение двух лет [61].

Заключение

Уникальность ВТД состоит в том, что он сочетает в себе свойства гастропротекторного и антибактериального препарата. Его многокомпонентный механизм действия обеспечивает защиту слизистой от воздействия различных повреждающих факторов, а антихеликобактерная активность позволяет преодолевать устойчивость H. pylori к антибиотикам, повышая эффективность фармакотерапии. В общем виде совокупность отдельных компонентов механизма действия препарата представлена на рис.

Новые направления создания препаратов висмута для лечения гастроэнтерологических заболеваний включают разработку висмут-содержащих наноструктур (bismuth-containing nanoparticles, Bi NPs). Так, созданный препарат нанотрубок висмута субкарбоната обладает мощным действием в отношении H. pylori (50% ингибирование в концентрации 10 мкг/мл) [62], а Bi NPs потенциально активен против грамотрицательных микроорганизмов, включая P. aeruginosa [63].

Наночастицы висмута в МИК 0,5 ммоль/л способны полностью подавлять формирование биопленки S. mutans, что сравнимо с эффектом применения хлоргексидина [64]. В работе тех же авторов водный коллоид наночастиц Bi2O3 со средним размером 77 нм эффективно угнетал рост и образование биопленок C. albicans, не проявляя цитотоксичности [65]. Делаются попытки синтеза висмут-фторхинолоновых комплексов, активных в отношении фторхинолон-резистентых штаммов микроорганизмов [66].

Исчерпывающие сведения по современным направлениям медицинской химии соединений висмута можно найти в обзоре J. A. Salvador и соавт. [67].

Литература

  1. Yang N., Sun H. Biological chemistry of antimony and bismuth / Biological chemistry of arsenic, antimony and bismuth/Sun H. (Ed.). Singapore: John Wiley & Sons Ltd., 2011. 400 р.
  2. Li W., Jin L., Zhu N. et al. Structure of colloidal bismuth subcitrate (CBS) in dilute HCl: unique assembly of bismuth citrate dinuclear units ([Bi(cit)2Bi]2-) // J Am Chem Soc. 2003. Vol. 125, № 4. P. 2408–12409.
  3. Andrews P. C., Deacon G. B., Forsyth C. M. et al. Towards a structural understanding of the anti-ulcer and anti-gastritis drug bismuth subsalicylate // Angew Chem Int Ed Engl. 2006. Vol. 45, № 34. P. 5638–5642.
  4. Mendis A. H. W., Marshall B. J. Helicobacter pylori and bismuth / Biological chemistry of arsenic, antimony and bismuth / Sun H (Ed.). Singapore: John Wiley & Sons Ltd., 2011. 400 р.
  5. Morgenstern A., Bruchertseifer F., Apostolidis C. Bismuth-213 and Actinium-225 — generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes // Current Radiopharmaceuticals. 2012. Vol. 5, № 3. P. 221–227.
  6. Lee S. P. A potential mechanism of action of colloidal bismuth subcitrate; diffusion barrier to hydrochloric acid // Scand J Gastroenterol. 1982. Vol. 17, Suppl. 80. P. 17–21.
  7. Turner N. C., Martin G. P., Marriott C. The influence of native porcine gastric mucus gel on hydrogen ion diffusion: the effect of potentially ulcerogenic agents // J Pharm Pharmacol. 1985. Vol. 37, № 11. P. 776–780.
  8. Tasman-Jones C., Maher C., Thomsen L. et al. Mucosal defences and gastroduodenal disease // Digestion. 1987. Vol. 37, Suppl. 2. P. 1–7.
  9. Williams D. R. Analytical and computer simulation studies of a colloidal bismuth citrate system used as an ulcer treatment // J Inorg Nucl Chem. 1977. Vol. 39, № 4. P. 711–714.
  10. Soutar R. L, Coghill S. B. Interaction of tripotassium dicitrato bismuthate with macrophages in the rat and in vitro // Gastroenterology. 1986. Vol. 91, № 1. P. 84–93.
  11. Coghill S. B., Hopwood D., McPherson S., Hislop S. The ultrastructural localisation of De-Nol (colloidal tripotassium dicitrato-bismuthate — TDB) in the upper gastrointestinal tract of man and rodents following oral and instrumental administration // J Pathol. 1983. Vol. 139, № 2. P. 105–114.
  12. Hollanders D., Morrissey S. M., Mehta J. Mucus secretion in gastric ulcer patients treated with tripotassium dicitrato bismuthate (De-Nol) // Br J Clin Pract. 1983. Vol. 37, № 3. P. 112–114.
  13. Roberts N. B., Taylor W. H., Westcott C. Effect of cyclo-alkyl lactamimides upon amylase, lipase, trypsin and chymotrypsin // J Pharm Pharmacol. 1982. Vol. 34, № 6. P. 397–400.
  14. Baron J. H., Barr J., Batten J. et al. Acid, pepsin, and mucus secretion in patients with gastric and duodenal ulcer before and after colloidal bismuth subcitrate (De-Nol) // Gut. 1986. Vol. 27, № 5. P. 486–490.
  15. Wieriks J., Hespe W., Jaitly K. D. et al. Pharmacological properties of colloidal bismuth subcitrate (CBS, De-Nol) // Scand J Gastroenterol. 1982. Vol. 17, Suppl.80. P. 11–16.
  16. Stiel D., Murray D. J., Peters T. J. Uptake and subcellular localisation of bismuth in the gastrointestinal mucosa of rats after short term administration of colloidal bismuth subcitrate // Gut. 1985. Vol. 26, № 4. P. 364–368.
  17. Hall D. W.R., van de Hoven W. E. Protective properties of colloidal bismuth subcitrate on the gastric mucosa // Scand J Gastroenterol. 1986. Vol. 21, Suppl. 122. P. 11–13.
  18. Estela R., Feller A., Backhouse C. et al. Effects of colloidal bismuth subcitrate and aluminum hydroxide on gastric and duodenal levels of prostaglandin E2 // Rev Med Chil. 1984. Vol. 112, № 10. P. 975–981.
  19. Konturek S. J., Bilski J., Kwiecien N. et al. De-Nol stimulates gastric and duodenal alkaline secretion through prostaglandin dependent mechanism // Gut. 1987. Vol. 28, № 12. P. 1557–1563.
  20. Crampton J. R., Gibbons L. C., Rees W. D. Effect of certain ulcer-healing agents on amphibian gastroduodenal bicarbonate secretion // Scand J Gastroenterol. 1986. Vol. 21, Suppl. 125. P. 113–118.
  21. Moshal M. G., Gregory M. A., Pillay C., Spitaels J. M. Does the duodenal cell ever return to normal? A comparison between treatment with cimetidine and denol // Scand J Gastroenterol. 1979. Vol. 14, Suppl. 54. P. 48–51.
  22. Gilster J., Bacon K., Marlink K. et al. Bismuth subsalicylate increases intracellular Ca2+, MAP-kinase activity, and cell proliferation in normal human gastric mucous epithelial cells // Dig Dis Sci. 2004. Vol. 49, № 3. P. 370–378.
  23. Kovac S., Loh S. W., Lachal S. et al. Bismuth ions inhibit the biological activity of non-amidated gastrins in vivo // Biochem Pharmacol. 2012. Vol. 83, № 4. P. 524–530.
  24. Beil W., Bierbaum S., Sewing K. F. Studies on the mechanism of action of colloidal bismuth subcitrate. I. Interaction with sulfhydryls // Pharmacology. 1993. Vol. 47, № 2. P. 135–140.
  25. Wagner S., Beil W., Mai U. E. et al. Interaction between Helicobacter pylori and human gastric epithelial cells in culture: effect of antiulcer drugs // Pharmacology. 1994. Vol. 49, № 4. P. 226–237.
  26. Stratton C. W., Warner R. R., Coudron P. E., Lilly N. A. Bismuth-mediated disruption of the glycocalyx-cell wall of Helicobacter pylori: ultrastructural evidence for a mechanism of action for bismuth salts // J Antimicrob Chemother. 1999. Vol. 43, № 5. P. 659–666.
  27. Ge R. G., Sun H. Z. Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs // Acc Chem Res. 2007. Vol. 40, № 4. P. 267–274.
  28. Ge R. G., Sun X, Gu Q. et al. A proteomic approach for the identification of bismuth-binding proteins in Helicobacter pylori // J Biol Inorg Chem. 2007. Vol. 12, № 6. P. 831–842.
  29. Lambert J. R., Midolo P. The actions of bismuth in the treatment of Helicobacter pylori infection // Aliment Pharmacol Ther. 1997. Vol. 11, Suppl. 1. P. 27–33.
  30. Stratton C. W., Warner R. R., Coudron P. E., Lilly N. A. Bismuth-mediated disruption of the glycocalyx-cell wall of Helicobacter pylori: ultrastructural evidence for a mechanism of action for bismuth salts // J Antimicrob Chemother. 1999. Vol. 43, № 5. P. 659–666.
  31. Tsang C. N., Ho K. S., Sun H., Chan W. T. Tracking Bismuth anti-ulcer drug uptake in single Helicobacter pylori cells // J Am Chem Soc. 2011. Vol. 133, № 19. P. 7355–7357.
  32. Xia W., Li H., Sun H. Functional disruption of HypB, a GTPase of Helicobacter pylori, by bismuth // Chem Commun (Camb). 2014. Vol. 50, № 13. P. 1611–1614.
  33. Li H., Sun H. Recent advances in bioinorganic chemistry of bismuth // Curr Opin Chem Biol. 2012. Vol. 16, № 1–2. P. 74–83.
  34. Cun S, Sun H. A zinc-binding site by negative selection induces metallodrug susceptibility in an essential chaperonin // Proc Natl Acad Sci USA. 2010. Vol. 107, № 11. P. 4943–4948.
  35. Baer W., Koopmann H., Wagner S. Effects of substances inhibiting or uncoupling respiratory-chain phosphorylation of Helicobacter pylori // Zentralbl Bakteriol. 1993. Vol. 280, № 1. P. 253–258.
  36. Pitson S. M., Mendz G. L., Srinivasan S., Hazell S. L. The tricarboxylic acid cycle of Helicobacter pylori // Eur J Biochem. 1999. Vol. 260, № 1. P. 258–267.
  37. Jin L., Szeto K. Y., Zhang L. et al. Inhibition of alcohol dehydrogenase by bismuth // J Inorg Biochem. 2004. Vol. 98, № 8. P. 1331–1337.
  38. Ottlecz A., Romero J. J., Lichtenberger L. M. Effect of ranitidine bismuth citrate on the phospholipase A2 activity of Naja naja venom and Helicobacter pylori: a biochemical analysis // Aliment Pharmacol Ther. 1999. Vol. 13, № 7. P. 875–881.
  39. Tsang C. N., Bianga J., Sun H. et al. Probing of bismuth antiulcer drug targets in H. pylori by laser ablation-inductively coupled plasma mass spectrometry // Metallomics. 2012. Vol. 4, № 3. 277–283.
  40. Lambert J. R., Yeomans N. D. Campylobacter pylori — gastroduodenal pathogen or opportunistic bystander? // Aust N Z J Med. 1988. Vol. 18, № 4. P. 555–556.
  41. Coghill S. B., Hopwood D., McPherson S., Hislop S. The ultrastructural localisation of De-Nol (colloidal tripotassium dicitrato-bismuthate-TDB) in the upper gastrointestinal tract of man and rodents following oral and instrumental administration // J Pathol. 1983. Vol. 139, № 2. P. 105–114.
  42. Treiber G., Gladziwa U., Ittel T. H. et al. Tripotassium dicitrato bismuthate: absorption and urinary excretion of bismuth in patients with normal and impaired renal function // Aliment Pharmacol Ther. 1991. Vol. 5, № 5. 491–502.
  43. Phillips R. H., Whitehead M. W., Lacey S. et al. Solubility, absorption, and anti-Helicobacter pylori activity of bismuth subnitrate and colloidal bismuth subcitrate: In vitro data do not predict In vivo efficacy // Helicobacter. 2000. Vol. 5, № 3. P. 176–182.
  44. Nwokolo C. U., Prewett E. J., Sawyerr A. M. et al. The effect of histamine H2-receptor blockade on bismuth absorption from three ulcer-healing compounds // Gastroenterology. 1991. Vol. 101, № 4. P. 889–894.
  45. Lee S. P. Studies on the absorption and excretion of tripotassium dicitrato-bismuthate in man // Res Commun Chem Pathol Pharmacol. 1981. Vol. 34, № 2. 359–364.
  46. Hamilton I., Worsley B. W., O’Connor H. J., Axon A. T. R. Effects of tripotassium dicitrato bismuthate (TDB) tablets or cimetidine in the treatment of duodenal ulcer // Gut. 1983. Vol. 24, № 12. P. 1148–1151.
  47. Dekker W., Dal Monte P. R., Bianchi Porro G. et al. An international multi-clinic study comparing the therapeutic efficacy of colloidal bismuth subcitrate coated tablets with chewing tablets in the treatment of duodenal ulceration // Scand J Gastroenterol. 1986. Vol. 21, Suppl.122. P. 46–50.
  48. Nwokolo C. U., Gavey C. J., Smith J. T. et al. The absorption of bismuth from oral doses of tripotassium dicitrato bismuthate // Aliment Pharmacol Ther. 1989. Vol. 3, № 1. P. 29–39.
  49. Wieriks J., Hespe W., Jaitly K. et al. Pharmacological properties of colloidal bismuth subcitrate (CBS, DE-NOL) // Scand J Gastroenterol. 1982. Vol. 17, Suppl.80. P. 11–16.
  50. Allain P., Chaleil D., Emile J. L’elevation des concentrations de bismuth dans les tissus des malades intoxiques // Therapie. 1980. Vol. 35, № 3. P. 303–304.
  51. Froomes P. R., Wan A. T., Keech A. C. et al. Absorption and eliminationof bismuth from oral doses of tripotassium dicitratobismuthate // Eur J Clin Pharmacol. 1989. Vol. 37, № 5. P. 533–536.
  52. Ивашкин В. Т., Маев И. В., Лапина Т. Л. и др. Рекомендации Российской гастроэнтерологической ассоциации по диагностике и лечению инфекции Helicobacter pylori у взрослых // Рос. журн. гастроэнтеролии гепатологии, колопроктологии. 2012. № 1. C. 87–89.
  53. Стандарты диагностики и лечения кислотозависимых и ассоциированных с Helicobacter pylori заболеваний (Пятое московское соглашение) // Эксперимент. клин. гастроэнтерол. 2013. № 5. С. 3–11.
  54. Маев И. В., Самсонов А. А., Коровина Т. И. и др. Висмута трикалия дицитрат повышает эффективность антихеликобактерной терапии первой линии // Эксперимент. клин. гастроэнтерол. 2012. № 8. C. 92–97.
  55. Williamson R., Pipkin G. A. Does bismuth prevent antimicrobial resistance of Helicobacter pylori?/Helicobacter pylori. Basic Mechanisms to Clinical Cure 1998/Ed. by R. H. Hunt, G. N. J. Tytgat. Dordrecht; Boston; London: Kluwer Acad. Publ., 1998. P. 416–425.
  56. Yoon J. H., Baik G. H., Kim Y. S. et al. Comparison of the eradication rate between 1-nd 2-week bismuth-containing quadruple rescue therapies for Helicobacter pylori eradication // Gut Liver. 2012. Vol. 6, № 4. P. 434–439.
  57. Sun Q., Liang X., Zheng Q. et al. High efficacy of 14-ay triple therapy-based, bismuth-containing quadruple therapy for initial Helicobacter pylori eradication // Helicobacter. 2010. Vol. 15, № 3. P. 233–238.
  58. Uygun A., Ozel A. M., Sivri B. et al. Efficacy of a modified sequential therapy including bismuth subcitrate as first-line therapy to eradicate Helicobacter pylori in a Turkish population // Helicobacter. 2012. Vol. 17, № 6. P. 486–490.
  59. Salvador J. A., Figueiredo S. A., Pinto R. M., Silvestre S. M. Bismuth compounds in medicinal chemistry // Future Med Chem. 2012. Vol. 4, № 11. P. 1495–1523.
  60. Ford A. C., Malfertheiner P., Giguere M. et al. Adverse events with bismuth salts for Helicobacter pylori eradication: systematic review and meta-analysis // World J Gastroenterol. 2008. Vol. 14, № 48. 7361–7370.
  61. Weller M. P. I. Neuropsychiatric symptoms following bismuth intoxication // Postgraduate Medical Journal. 1988. Vol. 64, № 750. P. 308–310.
  62. Chen R., So M. H., Yang J. et al. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate // Chem Commun. 2006. Vol. 21. P. 2265–2267.
  63. Pelgrift R. Y., Friedman A. J. Nanotechnology as a therapeutic tool to combat microbial resistance // Adv Drug Deliv Rev. 2013. Vol. 65, № 13–14. P. 1803–1815.
  64. Hernandez-Delgadillo R., Velasco-Arias D., Diaz D. et al. Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm // Int J Nanomedicine. 2012. Vol. 7. P. 2109–2113.
  65. Hernandez-Delgadillo R., Velasco-Arias D., Martinez-Sanmiguel J. J. et al. Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation // Int J Nanomedicine. 2013. Vol. 8. P. 1645–1652.
  66. Shaikh A. R., Giridhar R., Megraud F., Yadav M. R. Metalloantibiotics: synthesis, characterization and antimicrobial evaluation of bismuth-fluoroquinolone complexes against Helicobacter pylori. 2009. Acta Pharm. 59, 259–271.
  67. Salvador J. A., Figueiredo S. A., Pinto R. M., Silvestre S. M. Bismuth compounds in medicinal chemistry // Future Med Chem. 2012. Vol. 4, № 11. P. 1495–1523.
Читайте также:  Рецепт декора для блюд

С. В. Оковитый 1 , доктор медицинских наук, профессор
Д. Ю. Ивкин, кандидат биологических наук

ГОУ ВПО СПХФА МЗ РФ, Санкт-Петербург

Источник

Оцените статью
Adblock
detector